144=x^2+x^2

Simple and best practice solution for 144=x^2+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 144=x^2+x^2 equation:



144=x^2+x^2
We move all terms to the left:
144-(x^2+x^2)=0
We get rid of parentheses
-x^2-x^2+144=0
We add all the numbers together, and all the variables
-2x^2+144=0
a = -2; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-2)·144
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*-2}=\frac{0-24\sqrt{2}}{-4} =-\frac{24\sqrt{2}}{-4} =-\frac{6\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*-2}=\frac{0+24\sqrt{2}}{-4} =\frac{24\sqrt{2}}{-4} =\frac{6\sqrt{2}}{-1} $

See similar equations:

| 10=2n-8 | | (3x-2)-(2x-5)=0 | | 9-2x-9-16x=-14x-7-4x-1 | | 3/2q+7=67 | | 3a^2-4a+2a=2 | | 14=3f+2 | | 6x+4=1/2(4x+56) | | 6x+4=1/2(4x+560 | | 8(1.5^x)=25 | | 0.8÷(0.2·8)=h | | -2y-2+6=3(y+2) | | (5-2x)-(x+4)=7 | | 3/4x=2400 | | 2x^2-16x=40 | | 8x-6664=488 | | 2(3x+2)=-4 | | 29+4x=-5(7x+2) | | 4(4x-7)=-124 | | 29t+203=957 | | 7*2x-4=42 | | -8p-2(8-2p)=16-8p | | 63x^2+20x+105=0 | | 14x+112=630 | | p−12=6 | | 4(x+5)=2x+36 | | 3/4​=5x | | -24+8v=4(1-7v)+8 | | 23x+276=805 | | 4b^2+12b-16=0 | | (3x+2)-(4x-5)=0 | | -2/5j+6=3/5j-1 | | 6a^2-24a+18=0 |

Equations solver categories